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Abstract. This paper presents a new deep learning approach to sceptical and cred-
ulous acceptance of arguments, two key problems in Abstract Argumentation that
are most commonly solved using exact methods often by reduction to SAT. We
train a Graph Convolutional Neural Network with a randomised training regime,
dynamic balancing of training data, and improved residual connections and achieve
up to 97.15% accuracy improving on past studies by 30 percentage points. The new
approach is applied to problems from the ICCMA 2017 competition and achieves
a new state of the art for this type of architecture. Additionally, the training regime
used for this study has potential wider applicability in deep learning for graph struc-
tured NP-hard problems.
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1. Introduction

Abstract Argumentation is a formalism for non-monotonic reasoning that bases its repre-
sentation on the modelling of conflict. It is typically represented in the form of a directed
graph in which vertices represent arguments and edges a relation of attack. This gives
rise to a range of reasoning problems that determine the acceptability of arguments or
the joint acceptability of sets of arguments. The majority of these reasoning problems are
known to be NP-hard[1,2].

The vast majority of solution approaches in Abstract Argumentation are exact and
complete, often using reduction to some other formalism such as SAT [3] or ASP [4]
to solve the problem. In general, SAT based approaches have achieved the best solver
performance, but this type of approach does not necessarily provide the easiest fit with
real world deployment scenarios and very large scale datasets. There has been some re-
search into probabilistic methods [5], which unfortunately is not directly comparable to
this study in the evaluation criteria, and a single feasibility study into using Graph Con-
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volutional Networks (GCN) [6] that had mixed results depending on the dataset under
consideration.

There are, however, major benefits to approximate approaches such as Graph Neu-
ral Networks in this area that makes them worth considering in some cases. In particu-
lar, they have greatly superior run-time performance and are more easily integrated into
heavily parallelised Cloud-based architectures, although this comes at the cost of large
memory consumption and GPU support. In this paper, we compare only solver accuracy
and runtime performance as memory consumption metrics are not available.

This paper contributes to realising this goal by setting a new and improved state of
the art for the use of Deep Neural Networks to solve abstract argumentation problems.
This improvement applies both to the overall accuracy and to the balance between pos-
itive and negative inference. Furthermore, this paper is the first to consider both credu-
lous and sceptical acceptability. Finally, this paper introduces a new randomised training
approach that may have broader applicability to improving the training of GCN architec-
tures.

The rest of the paper will be structured as follows. First, the relevant background
material will be presented. Then we will detail the specific approach and architecture we
have used to approach the problem. We will, then, present our results and offer some
concluding remarks.

2. Background

2.1. Abstract Argumentation

Abstract Argumentation is a formalism for non-monotonic logic that uses a minimal
representation of a set of arguments and a binary relation on these arguments to model
conflict-based reasoning. It has its origin in a seminal paper by Dung [7] that laid out the
basic theory for the field.

Definition 2.1 (Argumentation Framework) An argumentation framework is a tuple,
F =< args,atts > in which args is a finite set of arguments and atts⊆ args×args defines
a relation of attack.

To say that A1 attacks A2 is hence the same as saying that (A1,A2)∈ atts. If S⊆ args
and A ∈ args we can extend this nomenclature by saying that A attacks S iff there exists
B ∈ S such that (A,B) ∈ atts. In a parallel manner, we can say that S attacks A iff there
exists B ∈ S such that (B,A) ∈ atts. We can also define a similar notion of defence.
An argument A ∈ args is defended by a set S ⊆ args if, for each B ∈ args such that
(B,A) ∈ atts, there exists a C ∈ S such that (C,B) ∈ atts.

The notion of acceptability is key to abstract argumentation.

Definition 2.2 (Acceptability) An argument A ∈ args is called acceptable with respect
to an extension ext ⊆ args iff for every B ∈ args with B attacks A there is an argument
A′ ∈ ext with A′ attacks B.

Extensions are subsets of argumentation frameworks that are collectively acceptable.
Extensions are evaluated based on semantics that define rules for what arguments can be
accepted together. Almost all semantics require the property of conflict-freeness.
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Definition 2.3 (Conflict-Freeness) Given an argumentation framework F =(args,atts),
a given subset, S, of this argumentation framework, is said to be conflict-free iff there
does not exist (A,B) ∈ atts with A, B ∈ S.

Dung’s original paper [7] defined four semantics, but for the current paper, only the
preferred semantic concerns us as that is the one used in the experiments.

Definition 2.4 (Preferred Extension) An extension, pr ⊆ args, is a preferred extension
iff it has the property of conflict-freeness, all its arguments are acceptable with respect
to pr and the extension is maximal with respect to set inclusion.

2.2. Convolutional Graph Neural Networks

Convolutional graph neural networks (CGNNs) draw on the popularity and success of
traditional CNN’s in particular in computer vision. There are, however, different ways
of defining the convolutional operation when it is applied to graphs, which gives rise to
different types of CGNNs. The most common approach bases itself on the digital signal
processing where convolution is seen effectively as a noise removal operation. The dif-
ference between most variants in this approach including the seminal GCN architecture
by Kipf and Welling [8], ChebNet [9], and CaleyNet [10] consists mainly in how they
represent, approximate, and simplify the filter operations used in the convolution of the
graph to achieve computational improvements. The second main approach to CGNNs
stays closer to the conventional CNN definition by considering convolution based on a
node’s spatial relationships[11]. That means spatial based methods in some way aggre-
gates information from a node’s neighbourhood. This can be seen for instance in the
Message Passing Neural Network [12] that explicitly defines a framework for looking at
graph convolution as a message-passing process.

There has been one previous paper that has applied GCN methods to Abstract Argu-
mentation [6]. In this paper, the authors conducted a feasibility study by applying Kipf’s
approach to a range of datasets but using random and real world argumentation frame-
works with limited success. Graph Neural Networks have also been used more success-
fully in the related fields of Automated Theorem Proving [13] and the Graph Colouring
Problem [14].

3. GCN for Abstract Argumentation

3.1. GCN Architecture

The architecture used in this paper builds and extends on the seminal approach intro-
duced by Kipf and Welling [8], but extends it in a number of areas. In the original for-
mulation, the GCN consisted of an input layer, two hidden layers with RELU nonlinear-
ities inserted in between, and ending with an output layer. Node embeddings were gen-
erated using a propagation rule following a first-order approximation of spectral graph
convolutions. We follow the same basic pattern, but add a number of features to allow
for greater depth and to tailor the approach to abstract argumentation graphs that do not
have node-level features.

The core components of the GCN architecture used in this paper include the follow-
ing elements:
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1. Graph Embeddings generated using DeepWalk [15], a random walk based
method, fed as input features along with the adjacency matrix of the argumenta-
tion framework. For the experiments in this paper the dimension of the embed-
ding was 64

2. An input layer receiving these inputs
3. 4 to 6 repeating blocks of a GCN layer [8] and a Dropout layer [16]. For all

experiments the Dropout rate was set to 0.5 and the size of the GCN layers 128
4. Residual connections feeding the original features and the normalised adjacency

matrix as additional input at each block
5. A Sigmoid output layer generating a probability for the acceptability of each

argument in the framework

The model was trained using Adam [17] with Binary Cross-Entropy as the loss function.
The training regime is described in subsequent sections.

Figure 1. GCN Architecture Overview.

3.2. Randomised Training Batches

Real-world abstract argumentation frameworks tend to have a skewed distribution be-
tween acceptable and non-acceptable arguments both for credulous and sceptical accep-
tance. In particular, there tends to be a large preponderance of non-acceptable arguments.
In the argumentation frameworks used for the experiments in this paper, the percentage
of non-acceptable arguments ranges from 69.5% to 99.95%. This affects GCN training
as the neural net will by default learn to predict a negative outcome even in cases where
it is incorrect. This problem was also noted by Kuhlmann and Thimm [6], who gener-
ated balanced training data to attempt to address it, but this approach does not seem to
have generalised well. Furthermore, a traditional split into fixed training, validation, and
test sets for training does not work well for this problem. When using such an approach,
the GCN could not effectively generalise to unseen data as confirmed by preliminary
experiments.

To overcome these limitations, we have devised a randomised training scheme that
generates random training batches at the start of each epoch. The overall training scheme
feeds multiple argumentation frameworks to the neural network as a single graph with
each argumentation framework represented by a single connected component. To pre-
serve the maximal amount of structural information for learning the entire graph is fed to



Malmqvist et al. / Determining the Acceptability of Abstract Arguments with GCNs 51

each network layer. The output layer of the neural network is a prediction of the accept-
ability of the argument. The randomised training operates by generating a new mask of
outcomes to be predicted at the start of each new epoch, essentially asking the neural net
to fill in the blanks. This is done to encourage the network to learn to generalise based
on structural properties of the graphs.

3.3. Dynamic Balancing and Outlier Exclusion

Two additional measures were taken to address the problems related to imbalanced train-
ing data and poor generalisation performance. First, the training mask created to facilitate
the generalisation of the neural network was developed to have the option of dynamically
balancing the training mask to include equal amounts of acceptable and non-acceptable
arguments. This has the intention to avoid the skew caused by unbalanced training data,
but also has the unfortunate side effect of reducing the amount of data used for training.
This mode is therefore not used in all experiments described in the results section.

A second optimisation was added to handle extremely skewed argumentation frame-
works. Some frameworks have no or almost no acceptable arguments and when included
tend to skew the training disproportionately. These frameworks have been excluded from
the training set using a z-score test with a threshold of 3.5.

3.4. Deep Residual Connections

The original formulation of Graph Convolutional Networks suffers from major perfor-
mance degradation with an increase of depth beyond a certain limit. Kipf’s [8] original
GCN, for instance, used only 2-layers in the model. In practice, as the depth of the GCN
increases beyond this limit the model stops responding to training data and instead con-
verges to a fix-point. This problem is known as the suspended animation problem and
the limit as the suspended animation limit.

Several approaches have been applied to overcome this limit and allow greater depth
in GCN architectures. Among the most fruitful approaches have been those that adapt the
notion of residual connections to the GCN context[18] by feeding in the graph structure
and node features across layers in a variety of ways.

In this paper, we follow a similar approach by adapting the graph-raw residual de-
fined by Zhang and Meng[18]. They define the residual term as the multiplication of the
normalised adjacency matrix and the raw input features. This residual term is fed as input
to each layer in the model, which achieves the aim of extending the suspended animation
limit.

The only difference in our approach is that the normalised adjacency matrix and raw
input features are fed to each layer separately rather than as a unit, largely for reasons
related to the implementation approach.
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4. Experiments

4.1. Dataset and Experimental Setup

The experiments were run against a dataset consisting of 900 argumentation frameworks
selected from the ICCMA 20172 Benchmark datasets. The selection includes frameworks
from benchmark sets A, B, and C including all 5 difficulty categories. Except for the
exclusion of a small number of very large argumentation frameworks that could not be
processed in the computational environment used for the experiment because of mem-
ory limitations, no systematic exclusions were made. Input frameworks contained up to
15,605 arguments and 6,250,500 attacks with an average number of arguments of 1,595
and average number of attacks of 187,542. We divided the dataset into 9 folds to facilitate
the training process and the neural net was trained sequentially on each fold. Training
and validation sets were generated using a random mask as described above and 10% of
graphs were held out as a test set for final evaluation.

The GCN model has been evaluated using two separate tasks: credulous acceptabil-
ity and sceptical acceptability under the preferred semantic. For an argument to be cred-
ulously acceptable in the context of a given argumentation framework it must belong to
one of the extensions of that argumentation framework; to be sceptically acceptable, it
must belong to all. To be able to frame the problem for supervised learning, we generated
ground truth solutions using the Pyglaf argumentation solver [19] for all argumentation
frameworks in the dataset.

The experiments were run on a single K80 GPU instance with 12GB ram. Each
model took between 4 and 12 hours to train. Separate models were trained for each
experiment listed in the results below. The following table details what elements were
used for each model.

Table 1. Models Trained

Model Layers Balanced Randomised Residuals
4-Layers Modified GCN 4 No Yes Yes
5-Layers Modified GCN 5 No Yes Yes
6-Layers Modified GCN 6 No Yes Yes
Mod GCN with Balanced Data 4 Yes Yes Yes
Mod GCN with Fixed Batches 4 No No Yes

4.2. Results

4.2.1. Credulous Acceptability

The results for Credulous Acceptability improve by 30 percentage points on the previ-
ous baseline set by Kuhlmann and Thimm. While the best performing model in terms
of overall accuracy is the 4-Layer Modified GCN, the better performance on positive
acceptability coupled with the very slight decrease in overall accuracy means that the
5-Layer Modified GCN is the overall best performing model.

Excepting the Modified GCN with Balanced Data, all the other models have a dis-
parity in favour of negative acceptability, which is consistent with the previous findings

2http://argumentationcompetition.org/2017/
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by Kuhlmann and Thimm. The Modified GCN with Balanced Data inverts the pattern
with a similar disparity between positive and negative in favour of the positive side,
which demonstrates that there is nothing inherent about negative acceptability that makes
it easier to learn. If anything, the opposite would seem to be the case as the Modified
GCN with Balanced Data will see roughly equal amounts of positive and negative train-
ing instances. The poorer overall performance of this model could be due to the lower
amounts of training instances seen because of dynamic balancing.

The extremely poor performance when predicting positive acceptability of the Mod-
ified GCN with Fixed Batches demonstrates the key contribution of the randomised train-
ing regime in obtaining good results in this domain.

Table 2. Results - Credulous Acceptability

Model Accuracy
Overall Yes No

4-Layers Modified GCN 92,68% 69,33% 93,54%
5-Layers Modified GCN 92,26% 73,56% 92,95%
6-Layers Modified GCN 91,63% 71,81% 92,37%
Modified GCN with Balanced Data 81,20% 91,20% 71,00%
Modified GCN with Fixed Batches 96,40% 7,00% 99,70%
Kuhlmann and Thimm 2019 - Unbalanced 62,00% 10,00% 97,00%
Kuhlmann and Thimm 2019 - Balanced 63,00% 17,00% 93,00%

4.2.2. Sceptical Acceptability

The results for Sceptical Acceptability seem to reflect the much starker imbalance be-
tween negative and positive instances in this setting. By the nature of the problem there
will tend to be much fewer positive instances in the sceptical setting. This is reflected in
all the models having a large discrepancy between positive and negative accuracy.

Similar to the credulous results, the Modified GCN with Fixed Batches is the worst
performer. It is, however, even more extreme for the sceptical case, possibly for the
same reason as before. For all intents and purposes the model is incapable of correctly
predicting positive acceptability and only gets good overall accuracy from the extreme
skew of the underlying dataset.

In contrast to the credulous setting, the Modified GCN with Balanced Data is the
clear overall winner under the sceptical setting. It has both the best overall accuracy
and is vastly superior in predicting positive acceptability with a relatively minor hit to
negative accuracy.

Table 3. Results - Sceptical Acceptability

Model Accuracy
Overall Yes No

4-Layers Modified GCN 96,21% 24,04% 97,10%
5-Layers Modified GCN 96,20% 22,92% 97,11%
6-Layers Modified GCN 96,24% 22,69% 97,15%
Modified GCN with Balanced Data 97,15% 46,35% 94,39%
Modified GCN with Fixed Batches 98,44% 0,33% 99,66%
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4.3. Ablation Studies

4.3.1. Effects of Depth

For both credulous and sceptical acceptability, three separate models were trained dif-
fering only in the number of layers they possess3. Based on these results the effect of
depth is inconclusive, but at best minor. Under the credulous setting the 5-Layer Modi-
fied GCN outperforms the other two slightly. Under the sceptical setting the results are
not significantly different enough to assess which model is superior.

The reasons why greater depth does not seem to lead to better performance are un-
clear at this stage and will require further research. Four layers may already be adequate
to capture what can be learned from the training data. It may also be related to the well
known issues experienced by other GCN models that have tried to increase depth. How-
ever, unlike some of these models, we are not seeing a decline in performance with the
addition of layers, but a more or less stationary set of results.

Table 4. Results - By Depth

Model Accuracy
Overall Yes No

4-Layers Modified GCN (Credulous) 92,68% 69,33% 93,54%
5-Layers Modified GCN (Credulous) 92,26% 73,56% 92,95%
6-Layers Modified GCN (Credulous) 91,63% 71,81% 92,37%
4-Layers Modified GCN (Sceptical) 96,21% 24,04% 97,10%
5-Layers Modified GCN (Sceptical) 96,20% 22,92% 97,11%
6-Layers Modified GCN (Sceptical) 96,24% 22,69% 97,15%

4.3.2. Effects of Randomisation and Balancing

The largest and most substantial difference in this study is between the models that in-
clude the randomised training regime and those that do not, including both models from
Kuhlmann and Thimm and the Modified GCN with Fixed Batches for both the credu-
lous and the sceptical case. That points towards this training regime being the largest
contributor to increased model performance.

The effects of balancing are more mixed, but also substantial. Kuhlmann and Thimm
found a small improvement from using a balanced dataset. In our model under the cred-
ulous setting, the Model GCN with Balanced Data performed substantially worse than
the other models that also use the randomised training regime. However, for the sceptical
setting it was hands-down the best performing model. This may be due to a relationship
with the extent to which the underlying training data is skewed. One could speculate that
the more skewed the training data, the greater the value of dynamic balancing.

3Note that the tables for the ablation studies do not contain additional results, but are constructed based on
the previous models.
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Table 5. Results - By Training Regime

Model Accuracy
Overall Yes No

Modified GCN with Balanced Data (Credulous) 81,20% 91,20% 71,00%
Modified GCN with Fixed Batches (Credulous) 96,40% 7,00% 99,70%
Modified GCN with Balanced Data (Sceptical) 97,15% 46,35% 94,39%
Modified GCN with Fixed Batches (Sceptical) 98,44% 0,33% 99,66%
Kuhlmann and Thimm 2019 - Unbalanced 62,00% 10,00% 97,00%
Kuhlmann and Thimm 2019 - Balanced 63,00% 17,00% 93,00%

4.4. Runtime Performance

Kuhlmann and Thimm [6] report an average runtime of 0.000007 seconds per argument
measured over their entire test set compared against a mean runtime for their reference
solver CoQuiAAS of 0.119561 seconds. Our runtime performance is consistent with this
achieving an average runtime of 0.000005 seconds per argument over the complete test
set.

5. Conclusion

The results in this article improve substantially on the previous baseline and while the
accuracy achieved is perhaps not yet sufficient for most real-world applications, it does
in some cases come close enough for consideration. Problems, however, remain around
the disparity between positive and negative accuracy, although this in some cases is less
marked than others. This problem would need to be addressed prior to any real-world
deployment.

The reasonable success of this approach seems to be largely down to the use of the
randomised training regime, which may have broader applicability beyond the domain
of abstract argumentation especially in addressing other NP-hard graph structured prob-
lems. The effects of depth and balancing, while they do contribute in some models, are
more mixed.

Finding ways to improve on this baseline may necessitate solving the question of
why a deeper model does not in this case lead to better results or alternately combining
this model with additional layers of a different type or a different kind of input features
to improve learnability.
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